Kuwait University Math 101 Date: May 5, 2008 Dept. of Math. & Comp. Sci. Second Exam Duration: 90 minutes Calculators, mobile phones, pagers and all other mobile communication equipments are not allowed Answer the following questions: (a) Use differentials to approximate $\sqrt[3]{8.12}$. (2 pts.)1. (b) Find $\frac{dy}{dx}$, where $y = \sec\left(\frac{\sqrt{x}}{x^2+1}\right)$. (2 pts.)2. Show that $f(x) = (x+1)^{\frac{5}{4}} + x^{\frac{1}{3}}$, has a vertical tangent line. (3 pts.) 3. Find an equation of the tangent line to the curve $3y^3 + 4xy - x^2 \sin y = 3$ at the point P(0,1). (3 pts.) (a) State The Mean Value Theorem. 4. (b) Let f and g be two differentiable functions on [a, b] satisfying: f(a) = g(a), f'(x) < g'(x), for all x in (a, b). Use the Mean Value Theorem to show that f(b) < g(b). [Hint: use h(x) = g(x) - f(x)] (4 pts.) 5. Two points A and B located at the origin (0,0) of the xy-plane. Point A moves along the positive x-axis at $3m/\min$, and point B moves along the positive y-axis at $4m/\min$. What is the rate of change of the distance between A and B after two minutes? (3 pts.)6. Let $f(x) = \frac{x}{1-x^2}$ and given that $f'(x) = \frac{1+x^2}{(1-x^2)^2}$ and $f''(x) = \frac{2x(x^2+3)}{(1-x^2)^3}$. (a) Find the vertical and horizontal asymptotes for the graph of f, if any. (b) Find the intervals on which f is increasing and the intervals on which f is decreasing. Find the local extrema of f, if any. (c) Find the intervals on which the graph of f is concave upward and the intervals on which the graph of f is concave downward. Find the points of inflection, if any.

(d) Sketch the graph of f.

(8 pts.)

Kuwait University	Math 101	Date:	May 5, 2008
Dept. of Math. & Comp. Sci.	Second Exam		Answer Key

1. (a) Let
$$f(x) = \sqrt[3]{x}$$
 and $x_0 = 8$, then $f'(x) = \frac{1}{3}x^{-\frac{2}{3}}$ and $\Delta x = 0.12$. So, $\sqrt[3]{8.12} = f(8.12) \simeq f(8) + f'(8) \Delta x = 2 + \frac{1}{12}(0.12) = 2.01$.
(b) $\frac{dy}{dx} = \left[\frac{\frac{1}{2\sqrt{x}}(x^2+1)-2x\sqrt{x}}{(x^2+1)^2}\right] \sec\left(\frac{\sqrt{x}}{x^2+1}\right) \tan\left(\frac{\sqrt{x}}{x^2+1}\right)$
 $= \left[\frac{1-3x^2}{2\sqrt{x}(x^2+1)^2}\right] \sec\left(\frac{\sqrt{x}}{x^2+1}\right) \tan\left(\frac{\sqrt{x}}{x^2+1}\right)$.
2. $f'(x) = \frac{5}{4}(x+1)^{\frac{1}{4}} + \frac{1}{3x^{2/3}}$. Since f is **continuous** at $x = 0$ and $\lim_{x \to 1} f'(x) = \infty$, then

 $\int \frac{f(x)}{4} = \frac{1}{4} \frac{(x+1)^4}{3x^{2/3}}$. Since *f* is **continuous** at x = 0 and $\lim_{x \to 0^{\pm}} f$ has a vertical tangent at x = 0.

3. Differentiate implicitly with respect to x, we have: $9u^2u' + 4u + 4xu' - 2x \sin u - x^2u' \cos u = 0$ Therefore u'

$$9y^2y' + 4y + 4xy' - 2x\sin y - x^2y'\cos y = 0$$
. Therefore, $y'|_{(0,1)} = -\frac{4}{9}$
Equation of tangent line: $4x + 9y - 9 = 0$.

- 4. (b) Let h(x) = g(x) f(x). So, $\underline{h(a)} = 0$ (g(a) = f(a)). Since f and g are differentiable on [a, b], then
 - (1) f and g and hence h are continuous on [a, b]

(2) f and g and hence h are differentiable on (a, b), and $\underline{h'(x) = g'(x) - f'(x) > 0}$ for all $x \in (a, b)$ (f'(x) < g'(x) for all $x \in (a, b)$).

From The Mean Value Theorem $\exists c \in (a, b)$ such that h(b) - h(a) = h'(c)(b - a). Since, b > a, h'(c) > 0 and h(a) = 0, then $h(b) > 0 \implies g(b) - f(b) > 0 \implies f(b) < g(b)$.

5. Let the coordinates of A and B, after time t, be (x, 0) and (0, y), respectively and S be the distance between A and B. Thus, $S = \sqrt{x^2 + y^2}$.

Solution (1): Differentiate with respect to t, $\frac{dS}{dt} = \frac{2x\frac{dx}{dt} + 2y\frac{dy}{dt}}{2\sqrt{x^2 + y^2}}$. After two minutes, $x = 3 (2) = 6m/\min$ and $y = 4 (2) = 8m/\min$. Thus, $\left|\frac{dS}{dt}\right|_{t=2} = 5m/\min$. Solution (2): $S = \sqrt{x^2 + y^2}$, x = 3t, $y = 4t \implies S = \sqrt{(3t)^2 + (4t)^2} = 5t \implies \frac{dS}{dt} = 5m/\min$.

- 6. Domain $f = \mathbb{R} \{-1, 1\}$. The point (0, 0) lies on the curve. f(-x) = -f(x), then f is an odd function. The graph of f is symmetric about the origin.
 - (a) $\lim_{x \to -1^{\pm}} f(x) = \mp \infty$ and $\lim_{x \to 1^{\pm}} f(x) = \mp \infty \implies x = -1$ and x = 1 are Vertical Asymptotes. $\lim_{x \to \pm \infty} f(x) = 0 \implies y = 0$ is a Horizontal Asymptote.
 - (b) $f'(x) \neq 0$. At x = -1 and x = 1, f'does not exist (f has infinite discontinuity). $\boxed{I \qquad (-\infty, -1) \quad (-1, 1) \quad (1, \infty)}$

1	$(-\infty,-1)$	(-1,1)	$(1,\infty)$
sign of $f'(x)$	+	+	+
Conclusion	7	7	\nearrow

f is increasing on $(-\infty, -1)$, (-1, 1) and $(1, \infty)$. f has no local extrema.

(c) f''(0) = 0, and f'' does not exist at $x = \pm 1$ where f is not continuous.

Ι	$(-\infty,-1)$	(-1,0)	(0,1)	$(1,\infty)$	
sign of $f'(x)$	+	—	+	—	, $(0,0)$ is an inflection point.
Concavity	CU	CD	CU	CD	

